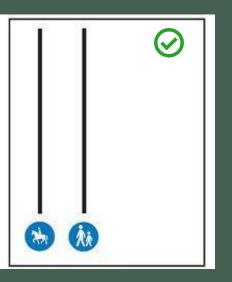
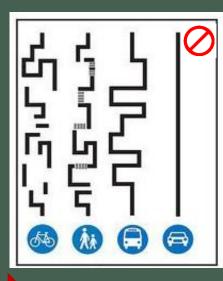


THE DEVELOPMENT OF CONTEMPORARY URBAN TRANSPORTATION IN RELATION TO URBAN STREET NETWORK

Peter Nikolov, Boryana Nozharova


COMPLEX SYSTEM

- pattern of settlements
- organization of production
- availability of infrastructure


WHAT SHOULD BE THE SCALE?

1800 100 years

years

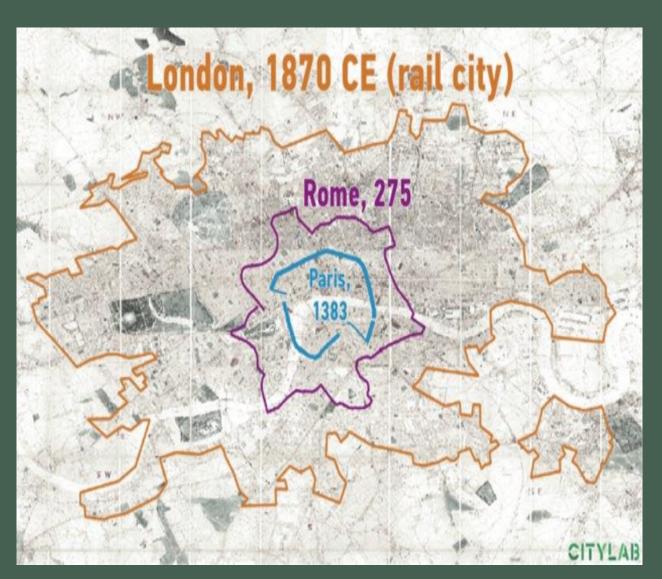
NEW ERA OF MOBILITY

FROM THE PEDESTRIAN CITY TO XXI-ST CENTURY MOBILITY

The evolution of street patterns since 1900 shows how street designs adapted to the needs of the automobile over time.

	Gridiron (c. 1900)	Fragmented Parallel (c. 1950)	Warped Parallel (c. 1960)	Loops and Lollipops (c. 1970)	Lollipops on a Stick (c. 1980)
Street Patterns					蓝星

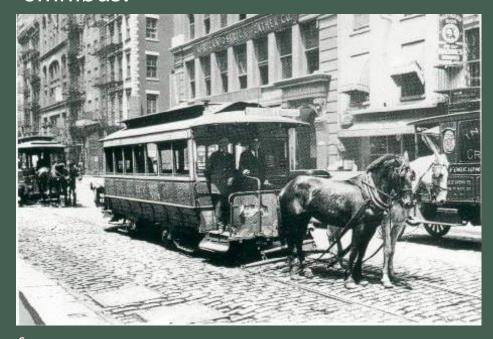
Source: Southworth, M. & E. Ben-Joseph, 2003. Streets and the Shaping of Towns and Cities. Washington, DC: Island Press. Courtesy of Michael Southworth and Peter Owens.


SQUARE-MILE NETWORK VISUALISATION

In Geoff Boeing's <u>Square-Mile Street Network Visualization</u>, he explores different street grids at the same scale: one square mile. We can extrapolate quite a bit about the walkability of these cities from their street patterns, especially if they were built before or after the advent of the automobile.

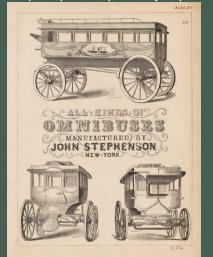
THE CITY ON RAILS: 1840s-1950s

With the emerge of the industrial revolution transportation was no longer limited to human and animal power.


Railways enabled relatively affluent people to live away from the city, in the urban fringe, or in close locared settlements.

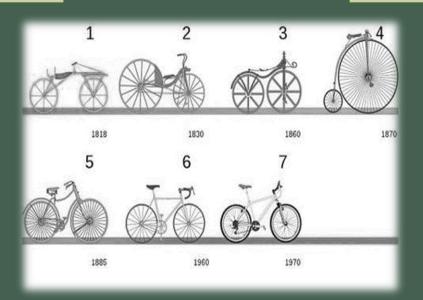
Source: David Rumsey Historical Map Collection, CC BY-NC-SA. Map: David Montgomery/CityLab

THE CITY ON RAILS: 1840S-1950S

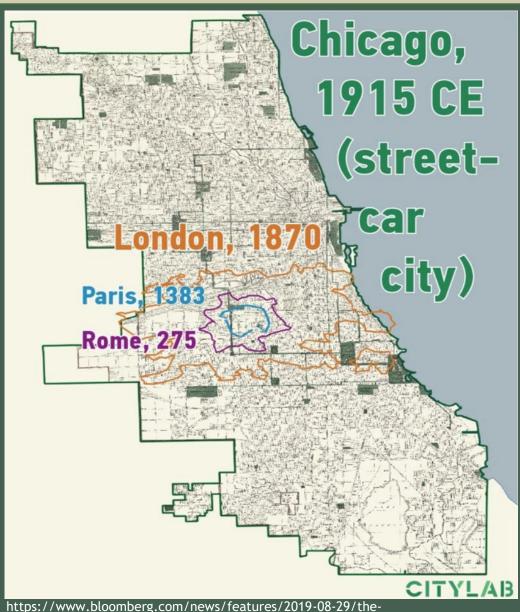

"When people who were riding inside wanted to get off the omnibus, they pulled on a little leather strap. The leather strap was connected to the ankle of the person who was driving the omnibus."

https://ephemeralnewyork.wordpress.com/2011/10/27/manhattans-earliest-form-of-mass-transit/

https://philadelphiaencyclopedia.org/first-electric-trolley-2/



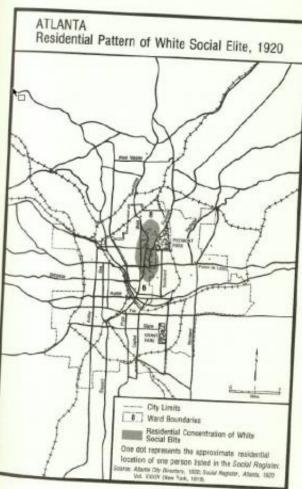
http://crystalpalace.visualizingnyc.org/digital-publication/struggle-for-the-shady-side-of-the-omnibus-public-transit-at-mid-century-and-the-new-york-crystal-palace/



THE CITY OF BICYCLES AND STREETCARS:

Chicago: The development of a comprehensive streetcar and elevated train network allowed Chicago to grow far beyond the pre-industrial limits of cities. Middle-class people could commute on rails and live farther from their workplaces.

Source: Harvard Map Collection, Harvard College Library. David Montgomery/CityLab



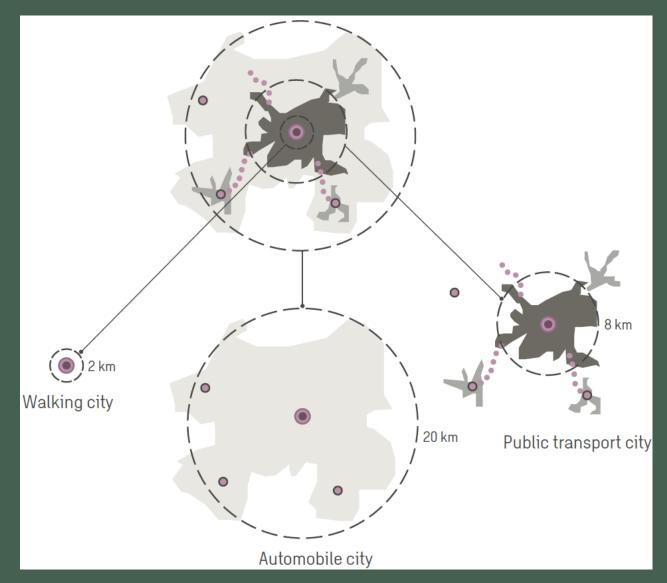
commuting-principle-that-shaped-urban-history

CITIES IN THE 1920'S AND 1930'S

THE CITY OF THE EXPRESSWAY: 1950s-2010s

THE CASE OF ATLANTA:

The ubiquity of the automobile and an enormous government investment in expressways allowed Atlanta to disperse homes and jobs over a large area.



MAIN TRANSPORTATION MODES

	Walking city	Public transport city	Automobile city
Optimal dimensional radius	0-2 km	0-20 km;	0-40 km
Average speed	5 km/h	20 km/h	40 km/h
Land use / population density	Evenly distributed	Dense and concentrated around station areas	Dispersed, evenly distributed
Street networks	Permeable for easy access; enables good level of service for pedestrians	Permeable for pedestrians, networks to reach transit stops corridors enable good levels of transit service	Permeability less important, enables high levels of service for cars on freeways, arterials and local roads. Bus circulation often restricted by cul-de-sac road structure.
Block scale	Short blocks	Medium blocks	Large blocks
Potential level of access	Equally distributed among pedestrians	Decreases with the distance from stations	High for those with cars low for other groups, especially those with a dispersed activity pattern
Modal share	Dominated (> 80%) by walking trips	Dominated by public transport and walking trips	Dominated (> 80%) by automobile trips

MAIN TRANSPORTATION MODES

Walking, public transport and automobile city, a combination of three overlapping city systems.

THE XXI CENTURY TRENDS AND NEW TECHNOLOGIES IN URBAN TRANSPORTATION

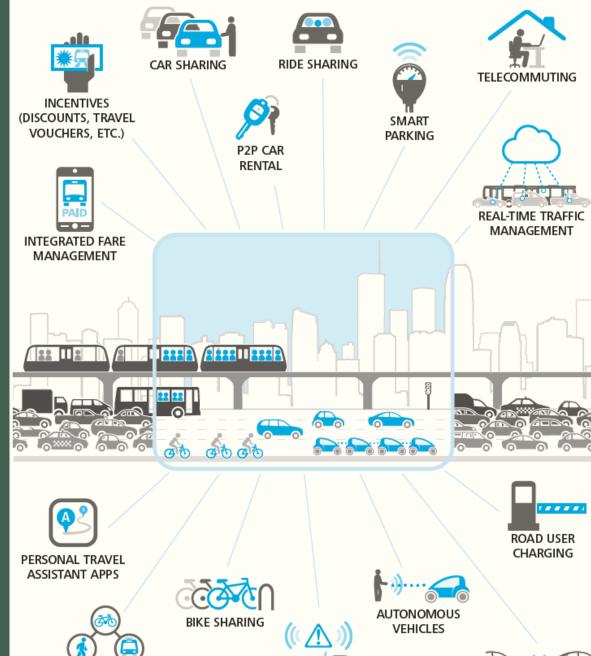
ARE PEOPLE ABLE TO PREDICT HOW TECHNOLOGIES WILL DEVELOP AND HOW WILL FUTURE TRANSPORTATION CHANGE OUR CITIES?

CITIES OF THE FUTURE?

INNOVATIVE

NEW WAYS TO

HELP PEOPLE



MULTI-MODAL

TRANSPORTATION

SOLUTIONS

REAL-TIME TRAVELER

INFORMATION

CONNECTED

VEHICLES

THE PRESENT AND FUTURE OF URBAN MOBILITY

FROM	то	
Individual car ownership, as predominant mean of transportation	Car ownership, as form of multimodal, on-demand, shared transport	
Limited consumer choice and few service levels	More consumer choice and many service levels	
Government funded public transit	Public and private transit operate in parallel	
Unconnected, poor transportation systems	On - demand, connected systems using data to unleash efficiencies	

SMART CITY

Sidewalk 9,000/HR **Protected Bikeway** 4,000/HR **Mixed Traffic** with frequent microtransit 1,000-2,800/HR

On Street Transit lane, **Bus or Rail** 10,000-25,000/HR

Private Autonomous Vehicle Lane 600-1,600/HR

Protected Sidewalk 9,000/HR **Bikeway** 4,000/HR

TRANSFORMATIONAL SHIFTS IN URBAN TRANSPORT

THE THIRD DIMENSION

Over 15 start-ups globally that are actively involved in building a future flying car

MULTIFARIOUS MOBILITY

ELECTRIFICATION

10 million cars will be either hybrid, plug-in hybrid, full electric or fuel cell EV by 2025

GREEN ZONING

90 sustainable cities globally will feature green transportation zones by 2025

DIGITAL RAIL

Digital railways could enable an addition of **up to 30% more trains** to operate than today

SMART CITIES

Over \$250 billion investment globally in smart infrastructure investment

SMART CITY

FUTURE STREETS: COMPONENTS

Automobiles

Freight + Delivery

Ride-Hail Zones

Biking

Lighting

Scooters

Transit

Cameras

Parcel Locker

Signage

Vegetation

Digital Infrastructure

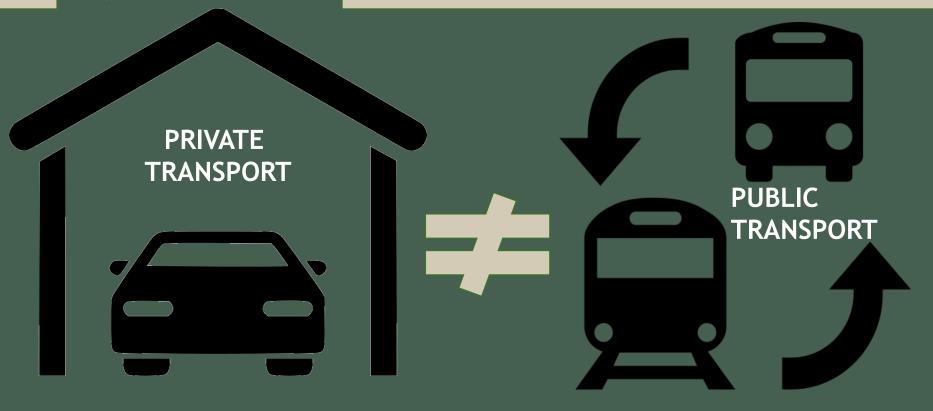
Parking

Solar Energy

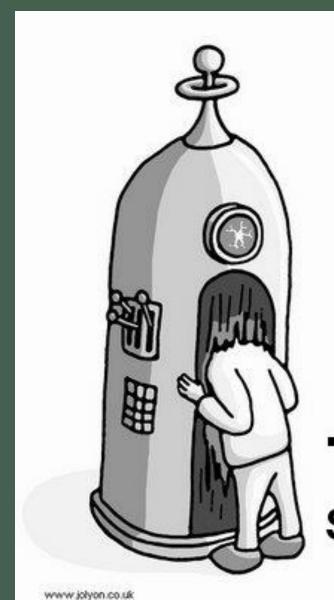
Water

Electric Car Charging

Pedestrians



Street Furniture



WALK

BIKE

SCOOTER - CARPOOL - BUS TO SCHOOL

Teleport Successful

2200

THANK YOU FOR YOUR ATTENTION!

Peter Nikolov, Boryana Nozharova